skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Flake, S_W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Forest thinning and prescribed fire are expected to improve the climate resilience and water security of forests in the western U.S., but few studies have directly modeled the hydrological effects of multi‐decadal landscape‐scale forest disturbance. By updating a distributed process‐based hydrological model (DHSVM) with vegetation maps from a distributed forest ecosystem model (LANDIS‐II), we simulate the water resource impacts of forest management scenarios targeting partial or full restoration of the pre‐colonial disturbance return interval in the central Sierra Nevada mountains. In a fully restored disturbance regime that includes fire, thinning, and insect mortality, reservoir inflow increases by 4%–9% total and 8%–14% in dry years. At sub‐watershed scales (10–100 km2), thinning dense forests can increase streamflow by >20% in dry years. In a thinner forest, increased understory transpiration compensates for decreased overstory transpiration. Consequentially, 73% of streamflow gains are attributable to decreased overstory rain and snow interception loss. Thinner forests can increase headwater peak flows, but reservoir‐scale peak flows are almost exclusively influenced by climate. Uncertainty in future precipitation causes high uncertainty in future water yield, but the additional water yield attributable to forest disturbance is about five times less sensitive to annual precipitation uncertainty. This partial decoupling of the streamflow disturbance response from annual precipitation makes disturbance especially valuable for water supply during dry years. Our study can increase confidence in the water resource benefits of restoring historic forest disturbance frequencies in the central Sierra Nevada mountains, and our modeling framework is widely applicable to other forested mountain landscapes. 
    more » « less